Bietigheim-Bissingen, Germany — If you drive a car, chances are it was painted using a system supplied by Dürr, the world's leading supplier of painting installations for the automotive and automotive supply industries. Dürr plans, constructs and commissions complete paint shops for nearly all the world's car manufacturers.

The company is part of the Dürr Group, a technology company employing 3,300 people around the world. Dürr creates integrated solutions not only for painting installations, but also for industrial cleaning and environmental systems, and automation and materials-handling technology. Because Dürr's solutions are for customers all over the world, Dürr often struggled with commissioning and after-sale servicing.

"Every manufacturer uses a different PLC, so control systems are not standardized anywhere in the world," explained Jan-Peter Grigoleit, director of software development.

"Different people in different companies would develop different interfaces, running on different hardware, so it was hard even to repair the systems. And we lost a lot of time and money educating the various subcontractors we use to commission the systems."

In 1992, the company decided to solve these problems by developing a standard user interface that would present a common "look and feel" to any PLC system. This flexible interface had to meet a number of criteria. First, it had to be hardware-independent and easily customized to customers' widely divergent needs, yet it had to be an improvement on current systems. It had to be something that multinational customers such as Ford, General Motors, Volkswagen, Daimler Benz, BMW or Fiat could use in all their plants worldwide. And it had to be something Dürr could develop quickly, because the time between order and shipment of a system is often short. After considering a dozen different possibilities, Dürr selected the InTouch human-machine interface (HMI) software from Wonderware, a business unit of Invensys Systems, Inc. Wonderware® InTouch software provides Dürr's systems with a uniform, object-oriented graphical user interface that runs on PCs. The InTouch HMI is rapidly becoming a new international standard operating system for factory applications.
At Ford in Portugal, for example, the British staff members naturally all spoke English, but the operator interface had to be in Portuguese for the operators. Using the new Dürr screens, users can simply press a button on the HMI screen and switch between English and Portuguese. And it was so quick to develop, Grigoleit recalled, that “within two weeks of starting to develop our first application using the InTouch Software, we were able to use it in a presentation for a job at Ford in Portugal.

Here’s a similar application that we did for Chrysler in Mexico,” he added, demonstrating a screen. “I can click the mouse and the screen is in Spanish. Or in Portuguese. French. German. English. Just click on the flag button for the country and language you want.”

Painting With Bells On

Following the success of that initial presentation in Portugal, Dürr started development of their standardized application for auto painting systems, which they call Ecopaint because its innovative technologies minimize emissions while maintaining the highest levels of paint quality.

“Our clients are concerned not only with cost and quality, but also with meeting the requirements of stringent environmental laws and regulations,” Grigoleit said. “The new HMI facilitates precision painting, which is so important for both economic and environmental reasons. The more precisely paint can be placed avoiding areas that require different paint — or no paint at all, like the windshield — the less paint is needed. Furthermore, paint that goes directly onto the car does not go into the air or the plant ventilation system, ultimately preventing pollution of the atmosphere.”
program on the PC network, Dürr has new uses for historical data and trending -- to track problems such as uneven paint wear, for example.

"Operators can check the variables in effect when a particular car was painted and study the results," explained Grigoleit. "They never had that resource available to them in the past. It's possible to do with other HMI systems, but it always took so much work that nobody did it -- not for a single customer or factory. But now variable-checking is a standard feature of our Ecopaint systems."

Just-in-Time Manufacturing

In an automobile painting operation, precise supervisory control is crucial because most automobile plants manufacture cars "just in time." That means that cars are painted to order, based on a transaction request, rather than to inventory. "When a car comes into the paint shop, it's a sold car, and the color is already specified," Grigoleit explained. "As a result, each car coming down the line might be a different color. One car is white and the next car is green and the next car is red, and so on. The gap between the cars is only maybe a meter or two, and during that gap we have to purge and clean all the pipes and bells to prepare for the next color." An error in those few moments between cars can be costly. But the InTouch software's graphical interface and alarm capabilities help operators quickly spot and fix problems.

Painting parameters change not only between cars, but on each car, as well. Car bodies are divided into more than a dozen zones, each to be painted separately. "For example, we might have, 11 atomizers, 10 different body styles, each divided into 16 zones, 30 different colors, flow-rate parameters and shaping-air parameters for each," Grigoleit observed. "We have variable turbine speeds, main needle switching points, paint color and viscosity, high tension and purge programs, all depending on variables. We normally have between 300-500,000 parameters to deal with in a painting operation. Before, operators simply couldn't manage all those parameters. There was no way to have an overview. Now, the HMI displays all the information graphically, in real time, on an easily read, intuitive screen."

In the past, operators had to keep their eye on tables filled with numbers to be sure the painting rates were correct. Now, that information is presented as a bar graph. "Operators can see at a glance if the values are correct or not," Grigoleit observed. "This graphical interface also prevents typos, which used to cause painting errors that wouldn't be noticed until the end of the line. Now, if the painting rate is supposed to be 200 ml per minute, and the graph says 20, the operators can spot it immediately. They can then click..."
over to another screen and see where the problem is on the car, too. That's the whole point of the operator interface -- to give them the information they need to optimize operations."

Look Before You Leap

Durr is continually testing new technologies and improving the efficiency and environmental friendliness of their systems, while meeting the unique needs of each customer. But those customers need information about costs, quality, processes, logistics and environmental protection measures -- including the design of the manufacturing facility -- before they can make an informed investment decision.

"It's a disaster if a car manufacturer builds a plant and it turns out not to meet their needs," admitted Grigoleit.

"They want to know if they're making the right technological decision before they build the factory. With Wonderware's InTouch HMI, they can base that decision on real information gathered in on-screen simulations."

The HMI lets planners run what-if scenarios and try out different designs in an animated graphical representation so clients can visualize the runtime environment and see all the variables while the application is still in the development phase.

Furthermore, InTouch applications can be developed quickly. Some of the Durr menus and screens are standard; the rest of the system is easily modified for each customer's needs based on booth design and car models.

"We often have only very short turnaround times from orders to commissioning, so we needed a tool that can be developed very quickly, using teams working in parallel," recalled Grigoleit. "With other systems, only one person can work on the development at a time, so it has to be developed serially. When you only have three months to develop a system and you have a stack of specifications running to a thousand pages or more, you need to have two to five people working on the application at the same time. We now create all our systems using only nine developers working as a team."

The need for easy configuration doesn't end when the installation is built. Every year, most manufacturers' models and colors change and all the parameters have to be reprogrammed. Operators used to have to type everything into tables, which was a tedious and error-prone task.

"Now, we have a toolbox that lets us copy data from one body style to another, reload, save, erase, etc., all at the click of the mouse," Grigoleit explained. "Customers now can do all of this editing and simulation in InTouch, in the office rather than on the plant floor. They can check it all out before they install it on the lines, and they know it'll work right away."

"We often have only very short turnaround times from orders to commissioning, so we needed a tool that can be developed very quickly, using teams working in parallel," recalled Grigoleit. "With other systems, only one person can work on the development at a time, so it has to be developed serially. When you only have three months to develop a system and you have a stack of specifications running to a thousand pages or more, you need to have two to five people working on the application at the same time. We now create all our systems using only nine developers working as a team."